Use of Multifrequency Airborne Radar Measurements for GPM Algorithms

Gerald Heymsfield¹, Lin Tian^{1,2}, Mircea Grecu^{1,2}, Vijay Venkatesh^{1,3}
¹Goddard Space Flight Center, ²GESTAR/Morgan State University, ³SSAI, Inc.

Objectives

NASA's Global Precipitation Mission (GPM) and Aerosol Chemistry Ecosystem (ACE) Mission Formulation have conducted two recent field campaigns using the instrumented NASA ER-2:

May-June, 2014: Integrated Precip. and Hydrology Experiment (IPHEx) Nov-Dec, 2015: Radar Definition Experiment(IPHEx)/OLYMPEx

- Here we highlight a few cases from the IPHEx and RADEX campaigns with emphasis on the ER-2 radar measurements, and preliminary microphysical retrievals.
- NASA ER-2 remote sensing aircraft was instrumented with 3 radars @ 4 frequencies from X- to W-band. Also, the UND Citation, ground-radars, and DC-8 (OLYMPEx) participated.
- "Column physics" has been a high priority in these campaigns, to better understand what is observed from spaceborne radars and radiometers, and the characteristics of clouds and precipitation below.

Integrated Precipitation Hydrology Experiment (IPHEx)

- 50.3, 52.6, 85.5(H&V), 89 (H&V), 165.5 (H&V), 183.3+/1, 183.3+/-3, 183.3+/-7 GHz
- 15 science flights that sampled a variety of precipitation systems.
- Coordinated flights with UND Citation in situ aircraft.
- 3 land-based calibration flights for radiometer/radar background statistics, for better PIA estimates .
- Radar calibration manuevers during 3 over water flights.
- 5 GPM underpasses (2 within DPR swath); one with precipitation
- 1 TRMM underpass; 1 CloudSat underpass during clear conditions.

ACE Radar Definition Experiment (RADEX)

- 12 science flights closely coordinated with DC-8 and UND Citation
- 3 Dec 2016 was excellent case with GPM overpass.

Date	Description	ER-2	EXRAD	HIWRAP	CRS	DC-8	Citation
10-Nov-16	Ridge condition with little precip over mountains		Υ	Y	Υ		
	Shallow post-frontal convection with an overrrunning						
18-Nov-16	altostatus ice layer	1759-0033	N	Y	Υ	1826-0025	2130-0021
	Wide zone of precip in an approaching weak trough						~1500-1800,
	and collapsing frontal system	1402-2214	Υ	Y	Υ	~1534-2156	2030-2330
	Part 2 of dying frontal system, weak snow at hurriane						1612-1740,
24-Nov-16	ridge, postfrontal clouds	1508-2216	N	Y	Υ	1345-2018	1853-2142
	Weak trough and front with extensive stratiform						
	modified by topography	2103-0208	Υ	Y	Υ	2056-0148	2247-0148
	Complex baroclinic system with orographically						
3-Dec-16	enhanced rain & GPM overpass	1408-1733	Υ	Y	Υ	1430-1721	1403-1710
							1306-1601,
4-Dec-16	Post frontal convection over the ocean and mountains	1305-2006	N	Y	Υ	1259-1753	1708-2006
5-Dec-16	Broad frontal cloud system with strong wind shear	1359-1757	Υ	Y	Υ	1353-1854	1435-1805
8-Dec-16	Orographic enhancement of an "Atmospheric River"	1827-~0030	Υ	Y	Υ	1308-2019	
10-Dec-16	Occluided front and post-frontal convection	1434-1702	N	Y	Υ	1451-2005	1434-1702
	Precipitation associated with an occluded front and						
12-Dec-16	warm sector	1800-2206	Υ	Y	N	1549-2155	1657-2013
							1552-1910,
13-Dec-16	Convection following the passage of an occlusion	1603-0002	N	Y	N	1352-1852	2005-2319

RADEX/OLYMPEX: GPM Overpass / Aircraft Coordination on 3 Dec 2015

titude and 3.75 km. DPR data is interpolated and mapped to uniform grid. Solid black line is the ER-2 track. Blue line is satellite nadir. This and other DPR plots use ZFactorMeasured reflectivity. NPOL position is marked with an "X".

DPR Ku and Ka-band reflectivity interpolated to ER-2 radar profiles. Olympic mountains are white region in top plot.

NPOL PPI scan at 15:19
UTC and 1.5 degrees for same region as DPR section to left.ER-2 fight track is shown by black line and NPOL position is marked with an "X".

ER-2 Radar Dual-Frequency Ratio

Dual-frequency ratios (above): DFR (Ku/Ka) and DFR (Ka/W). These values are not attenuation corrected. The DFR (Ka/W) is enhanced above the melting level possibly due to a combination of ice particle characteristics and particle phase.

ER-2 radar measurements from X-band (top) to W-band (bottom). Melting layer is at approximately 2 km. Peaks in Olympic Mountains are obvious on right side of plots.

Radar Retrieval - IPHEx - 12 June 2014

Radar Retrieval Framework

- Dual-frequency (Ku/Ka) radar profiling algorithm (Grecu et al., 2011, J. Appl. Meteor. Climatol.) with improvements for the addition of W-band & ice phase.
- Derive ensemble of Nw-dependent, Ka-band retrievals
- Simulate W- (Ku-) band reflectivity observations from the Ka- retrievals
- Adjust Ka-band retrievals to maximize the agreement between simulated and observed W- (Ku-) band reflectivity

Assumptions:

- ✓ Particles sizes are parameterized using normalized gamma distributions.
- ✓ m is assumed known, while Nw and Dm are retrieved.
- ✓ Dm is retrieved for every gate, while Nw is retrieved for every gate above the freezing level and assumed constant below frz level.
- ✓ All the other variables (e.g. precipitation water content, precipitate rate, etc.) are derived from Nw, Dm and m.
- ✓ Rayleigh Gans approximation (Westbrook et al. 2008) used at W-band.
- ✓ Masunaga et al. (2010) model is used to derive the electromagnetic properties in the melting layer.
- ✓ The fast multiple scattering model of Hogan and Battaglia (2008) is incorporated into the framework.
- ✓ No significant multiple scattering effects are predicted by the model for the June 12, 2014 case.
- ✓ Mie calculations for snow based on the soft sphere approximation assuming constant density (e.g. r=0.1gcm3).

Relevant Papers

- Heymsfield, G.M. and co-authors, 2013: Airborne radar observations of severe hailstorms Implications for future spaceborne radar. J. Appl. Meteor. Clim., 52, 1851-1867.
- Battaglia, A., and co-authors, 2016: Using a multiwavelength suite of microwave instruments to investigate the microphysical sturcture of deep convective cores. J. Geophy. Res., 9356-9381.
- Grecu, M., L. Tian, W. S. Olson, S. Tanelli, 2011: A robust dual-frequency radar profiling algorithm. JAMC, 1543-1557.

Radar Retrievai - IPHEX - 12 June 2014

Future Work

Observed W, Ka, and Ku-band Ref-

lecitivity from 12 June 2014.

- Coordinated observational studies between ER-2, Citation, and ground radars for IPHEx and RADEx cases.
- Prepare cases (further QC, etc.) for radar and combined retrieval studies.
- Perform radar/combined retrievals (Grecu).
- Quantitative radar comparisons with GPM, DC-8, and ER-2 radars.
- Examine beam filling, multiple scattering, etc. with data sets.